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Comparison of Prediction Methods for Damping of 
a Symmetric Balanced Laminated Composite Beam 
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To determine the efl'ective damping of a symmetric, balanced laminated composite, three 

different analytical models were compared. In the first model, Adams and Ni's theory was used. 

In the second model, modified classical lamination theory based upon the elastic viscoelastic 

correspondence principle was used. In the third model, an energy approach was developed to 

investigate the damping of laminated composite beams. Four typical laminated composites with 

V _+_ 9] s, [ 0 / +  0] s, [0 /0]  s and [0/_+ 0/90] s stacking sequences were employed for this study. 

Key W o r d s  : Vibration, Damping, Loss Factor, Laminated Composites, Classical Lamination 

Theory, Energy Approach, Force Balance Approach, Elastic Viscoelaslic Corre- 

spondence Principle 

1. Introduction 

Composites have been used to manufacture 

enclosures, airframe structures, sports goods, heli- 

copter blades, spacecraft and ground vehicles. 

Composites have more attractive properties such 

as lighl weight, superior strength and sliffness. 

than the conventional materials. The structural 

elements usually are subject to undesirable vibra- 

tions. In order to use composites as dynamic 

structural members, their vibration damping 

properties must be understood(Adams,  1987; 

Hashin. 1970). These damping properties are 

important factors in the design of composite 

dynamic structures. Therefore, it is necessary to 

compare prediction methods and determine the 

most efficient method for predicting the damping 

of composites. 

Adams and Ni (1984) developed a model to 

provide: designers with a useful and accurate 

prediction method for damping of composites. 

Their model predicted damping in laminated 

composites related to 3 sources of energy dissipa- 

tion with respect to the in plane stresses #x, o'~ 

and~v,, in the fibre coordinate system. Sun and 

coworkers (1987) proposed another damping 

prediction method which use the classical lamina- 

tion theory and elastic viscoelastic correspon- 

dence principles. We have further developed and 

modified these theories. 

The objective in this paper is to develop a new 

mathematical model to predict the damping val- 

ues of symmetric balanced laminated composites. 

Material damping usually occurs as the result of 

the flexural vibration. Thus, we accounted for all 

possible flexural moments on the laminated com- 

posite beam during free vibration, in the 

proposed damping prediction model, all feasible 

moments in the constitutive equations of the plate 

theory of laminated composites are taken into 

account by considering only the principal curva- 

ture (xl) corresponding to mode 1 shape(i, e. first 

flexural mode). The damping of a symmetric 

balanced laminated composite predicted in this 

paper is based on the modified classical laminated 

theory with a complex modulus and the proposed 

new model. It is compared with that of Adams 

and Ni's model. 

2. Analysis 
* Kwangju--Chonnam Regional Small & Medium 

Business Office, Kwangju 502200. Korea In this study, three analytical approaches were 
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Table I Basic material properties of AS4/350I 6 

composites used in this study. 

E, 7 T  G~T rk7 ~ ~.T zl .... 

12s J_9.7 03 [ 59 i,s405/ss 0,[ %477_[ 9,2~04 

Fig. 1 

x : fiber direction 
y :normal to the fiber direction 
z : normal to x-y plane 
1,2 :loading direction 

Fiber and loading coordinate systems used in 
the analytical models. 

employed. The first model devoloped by Adams 

and Ni is the energy approach. The damping loss 

factor, ;7, is defined as ; 

z/W 

where zIW is the energy dissipated during a stress 

cycle arid W is the maximum strain energy. The 

second model which was modified is to use the 

force balance approach. In this approach, we 

obtain the !A], IB! and [D] stiffness matrix in 

laminated composites by utilizing classical 

lamination theory. The damping of laminated 

composites is defined as the ratio of each compo- 

nent of [A~, ~B 1 and [D 1 loss moduli to their 

storage ones. The final model is a new energy 

approach. Three analytical formulation is perfor- 

med on the coordinate system as shown in Fig. 1. 

The basic material data used for three models are 

shown in Table 1 as well. 

2.1 Modification of basic damping loss fac- 
tors 

In order to calculate the dissipated energy in 

composites, it is essential to accurately evaluate 

the basic damping loss factors. In general, it is 

known that an increase in the amount of damage 

in the material, the stress amplitude of'the test, or 

the test frequency tends to enhance the damping 

loss factor. 

The theoretical models that are currently avail- 

able to predict the damping loss factor for com- 

posites are inadequate for design purposes. A 

theoretical model (Hashin, 1970) assumes that 

adhesives are flexible and the bonding between 

the fiber and the resin is perfect. However, practi- 

cally, it is very difficult to fabricate specimens to 

exactly suit the model, Also, damping can be 

caused by interface mechanisms such as shearing 

motion between the fiber and the matrix. More- 

over, as the structural dimensions increase, the 

number of defects in the material increases as 

well. Thus, discrepancies between theoretical 

predictions and practical results are unavoidable. 

In order to make up for this problem, it is 

proposed that the formula of" the basic damping 

loss l'actors in laminated composites must include 

a curve fitting parameter on the nondimensional 

stiffness terms, based on Hashin's theory (1970) 

and rule of mixtures. 

From an elastic-viscoelastic correspondence 

principle, Hashin (1970) derived expressions for 

the basic damping loss factor of a laminated 

composite. For axial loading, the basic damping 

property (GL) is represented by 

g," E,, (1) 
7 ] I ' : ' = 7 ] m ( i  - -  " ' J E L 

where, r/L is the axial damping loss factor in 

composites, 72m is the damping loss factor of 

matrix, Vf is the fiber volume fraction in compos- 

ites, Em is the Young's modulus of matrix, EL is 

the axial Young's modulus of composites. 

However, these theoretical values do not agree 

with experimental values. Despite considerable 

effort to eliminate extraneous losses, it was found 

(Adams, 1987) that this expression considerably 

underestimates the experimental value of r/L. Sev- 

eral factors were thought (Adams, 1987) to con- 

tribute to the discrepancy : fiber diameter, fiber 

misalignment, imperfections in the:  material 

(cracks and debonds) and the interfacial shear 

effect. Thus, a curve fitting parameter (if) is 

herein introduced in the relationship between the 
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axial damping loss factor (rlL) and the stiffness 

term ( E ~ )  : 

z]L= v,~+ Vf(~.~])  ~ (2) 

where. 

Z]m the damping loss factor of the matrix, Zil-- 

the axial damping loss factor of a unidirectional 

composites, Vm--the matrix volume fraction, Vf-- 

the fiber volume fraction, Era=the matrix Young' 

s modulus, EL=the axial Young's modulus of 

composites, and a - - the  curve fitting parameter 

for axial loading. 

Similarly, for longitudinal shear loading, it is 

proposed that the theoretical equation be 

modified by introducing the parameter (/3), 

which is fitted to average experimental results by 

trial and error : 

z]~(1-v/) [((5+1)12~i+ I5(() I) 12+'~1] 
zicr= [ G<,+,>(I ~-V/) +I~ ~5.1[ ( / , . ~ =  Vz) +I + V,I (3) 

where, G=G:- /Gm,  G/  the longitudinal shear 

modulus of the fiber, Gm the shear modulus of 

the matrix, and f l= the  curve fitting parameter for 

longitudinal shear loading. 

For the transverse damping loss factor (fir), 

the rule of mixtures and the elastic viscoelastic 

correspondence principle give us the following 

equation : 

z/r =r]m -- V / +  V,~ ( E;~- ) (4) 

This equation may be modified by introducing 

parameter (~') as follows : 

r/~ V+ 

~ = 7 1 ~ -  1/f+ v~(E~+)~ (5) 

where, r/T=the transverse damping loss factor of a 

unidirectional composites, E r / - - the  transverse 

Young's modulus of the fiber, and ~ = t h e  curve 

fitting parameter for transverse loading. 

For the Poisson's damping loss factor (Zi,LT), 
the rule of mixtures and the elastic viscoelastic 

correspondence principle give us the following 

equation : 

7]VLTzVf If- 7]vmULTm Vm (6) 
~]vLr V/VLTy + VmVLrm 

where, 7]~l=T=the Poisson's damping loss' factor, 

71~LTf=the Poisson's damping loss factor of the 

fiber, VLTf--the Poisson's ratio of the fiber, ~]~= 

the Poisson's damping loss factor of the matrix. 

Hence, the accuracy of the predicted damping 

loss factor in any laminated composite depends 

on the choice of the basic damping experimental 

data (i. e. r]i, ~]T, Z]LT and ~]vl.T O f0~ unidirectional 
specimen). Technically, it is difficult to accurately 

locate the resonance frequency and the half 

power points due to the limited frequency resolu- 

tion of the analyzing instrument. Therefore. the 

basic damping loss factors can only be estimatcd 

statistically by trial and error. In addition, a 

rigorous and standardized experimental method 

must be developed to obtain consistent damping 

results in all materials. 

2.2 Adams and Ni's approach 
In this theoretical analysis(Ni and Adams, 

1984), only the principal flexrual moment(M1) is 

considered on the specimen. By employing plate 

theory for laminated composites, the strains in the 

U h layer are determined. The constitutive equa- 

tion associated with stresses and strains in the k th 

layer gives us in-plane stresses in the loading 

coordinate system. For the beam specimen analy- 

sis, a2 k and o'6 k are not considered since at k is 

much larger than they. Also, ~21' is neglected since 

s2 k is much smaller than ~'1 k and e6 k. From 

Adams and Ni's (1984), the strain energy dissipa- 

tion, ~W,  which is subjected to bending in the 

symmetric laminated beam is divided into three 

parts related to in plane stresses, ex, Cy and exy, 

in the fiber coordinate system : 

A W = Z I W x +  API~.+ AWxy (7) 

The strain energy dissipation about 0"x is written 

as 

A W x :  2 z~Laxexdzdx 

=2zz]L axexdzdx (8) 

22r]L h/2 
/" m 2+n d*  d*  A W x  ~ 1*2 JO ,%411 it-~-Q12dl*2+Ol6 16) 
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( m2d~*~ + mnd,D Z d z f ' M ? d x  

where, 

[ is the length of beam, h is the thickness of 

beam, 

~m Vm 
r]L= Vm+ VI (@-LL) ~ is the axial damping loss 

factor of 0 ~ unidirectional composites, 

7]m is the matrix resin damping loss factor, 

M~ is the principal bending moment in the 

cantilever beam, 

c~ is the curve fitting parameter, 

I* is the normalized moment of inertia. 

d ~ is the normalized flexural compliance com- za  

ponent. 

Similarly, z/Wy and z/Wx~, can be evaluated as 

follows : 

,dW 2zz~r [h,2 *+ d* = I * ~  Jo ~12(Qlidl*l-~-(~12d12 016 16) 

( nZd:] -- mndi*~) z Z d z f  'Medx (9) 

27rz]L r fhl2 ,dW~= i .e  mn(Q.dl*~+Qlzd~*2 

+ Qt6d~*6) (2mnd~*~ - (rn z -  n ~) d~*~) 

z'~ d~ f 'M;~ dx (m) 

The bending strain energy of the beam is 

lVl~X~ax=7~jo ~v.tl (11) 

The total damping loss factor (r]ov) in laminated 

composites is then expressed as : 

~bov= 2z]W AWx + A ~  + zII/[% (12) 

where, 

~b0v--2zrz]ov is the specific damping capacity in 

laminated composites, r]o,. is the overall damping 

loss factor in laminated composites. 

2.:3 M o d i f i e d  c l a s s i c a l  l a m i n a t i o n  a p p r o a c h  

In order to obtain the complex modulus, we 

relied on the elastic viscoelastic correspondence 

principle. The complex equation includes two 

real constants for storage and loss moduli. The 

material damping for a symmetric balanced 

laminated composite is obtained as the ratio of 

the loss modulus to the storage modulus. Using 

the elastic-viscoelastic correspondence principle 

(Sun et. al., 1987), we describe the basic engineer- 

ing constants in a complex form as follows : 

E ~ = E L ( I  + i ~ )  (13) 

E~ =ET(1 +i~]r) (14) 

G[.r = GLr ( 1 + iz?Lr ) (15) 
* - ( 1 6 )  "tJLT --- V L T  (1 + i~,~.r) 

where, 

rj~ V,~ 

7,.-- Vm+ � 8 9  

Vm Vs 

~ - = ~ ' ~ -  Vz+ V, , (E[~)  ~ 

~2~(1 V,O[(G+I)ie~el4 Vs(G-I) {e-e~] 
~TLr = [G{, ~')(1 + V l ) + l -  [5] [G"+e'(I- Vs)+11-  Vi i  

~vL~rVj + ~=vLr,~ V,~ 
r ~VLTS+ Vmvl.r~ 

in which, V ,=  I - - V  m is the fiber volume frac- 

tion, a, ~" and fl is the curve fitting parameters for 

data reduction, 

Gj  
G - G I n .  

The relations between Q~j and the basic engineer- 

ing constants are described as" 

EI_ 

Oxx= 1 _ V~r (__~;~_) (17) 

ULT~2T 

e , ET- , (18) 0 . , =  1 - v,.~ t - ~ g ~  

Er 
QYY= l -- VLr2 ( E r )  (19) 

% 

O,~.~-- Gl.r (20) 

Substituting Eqs. (7), (10) into Eqs. (11), (14), 

we obtained the following relations " 

, , 

Q~*,~ = @y + iO',;, (22) 
, �9 _ [ _  �9 t ,  O.~-y= Oxy zQ~y (23 )  

�9 - -  GLT -- GLT (1 q- i~Lr) (24) 

To calculate ~A~, [B~ and IDa, we transformed 
i-Q ] with reference to the fiber orientation of each 

layer. The transformed Q~j and QII} (i, j = 1, 2, 6), 

which are related to Qij (i, j=x..  y, s), are de- 
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scribed as 

011 OxxcOS40+Oyfiin4t)+2(Qxy+2Oss) 
sinZ0cos~0 (25) 

Q22 QxxSin40+OyyCOS4O+ 2(Qxy+ 2O.~s) 
sin20cos2O (26) 

QI2 (Q~x+Qyy 4Qss)SinZOcos20+Q~y 
(sin 4 0 + cos 4 0) (27) 

066 (Qxx+Qyy-2Qxy-2Qss)sinZOcos'eO 
@ O,~s (sin40 § cos 4 O) (28) 

Q16= ( Qxx Q~y-  2Qss)sinOcos30 + ( Qx~ 
- Qyy 2Q~)sin3Ocosg? (29) 

Q26 (Q~-Q. , .y  2Q~)sin3OcosO+(Q~y 
- -  Q y y  2Qs~)sinOcos30 (30) 

The expression of  A~j, B i and D i from the classi- 

cal laminat ion theory and the elastic viscoelastic 

correspondence principle are given by 

A,* A~j + iAT~= ~ ( O;~ + 
h = l  

( h ~ - h ~  ~) (31) 
1 N 

B~ Bb+iB;5 ~ Y '  (Q;~+iQ':;.) ~) 
h = l  

h h: ~ (32) ]e-- k - - l )  

D? D;j+iD;}=-~ ~, (Q;~+iQ;j-) (k) 
.3 k = l  

(h ~ h ~ ~ (33) k t~-1) 

where, i ~/ 1. 

We conver ted  these m o d u l u s  cons t an t s  

obtained from a symmetric balanced laminated 

composi te  into the cor respond ing  complex  

modulus  constants using elast ic-viscoelast ic  cor- 

respondence principle. We then evaluated the 

material damping  of  a symmetric balanced 

laminated composi te  as follows �9 

A ~  (stretching) -- ~l'~j (34) 

13zA~ (coupling) -- /3;j (35) 

Dz]i~ (bending) D;j (36) 
D~id 

where, i, j 1, 2, 6. 

Consequent ly ,  the effective laminate engineer- 

ing constants Ex, Ey, Vxy and Gxy can be expressed 

as functions of  the stretching stiffness constants, A ~, 

and the laminate thickness. We evaluated the 

storage stiffness constants A,v and the correspond- 

ing dissipated constants, each separately, from the 

relat ionships between the effective engineering 

constants and [A] stiffness constants. We then 

obtained the material damping for the symmetric 

balanced laminated composites in terms of  the 

measurable  engineering properties for compari-  

son with predictions. 

2.4 Proposed energy approach 

From the plate theory of  symmetric balanced 

laminated composites we can express the curva- 

ture components  as follows : 

Xl d1~M~ + d12M,~ + dx6M6 (37) 

x2 = d~2M1 + d.e2M2 + d,~M6 (38) 

x6 = d~6M1 + d~6M2 + d~6M6 (39) 

where, dij is the flexural compl iance  matrix com- 

ponents of  the laminates. 

And  the relations of  moment  deflection in the 

laminated beam are given by 

8 2 w ( 40 ) M I =  D11 ~X2 

32 w (4 1 ) M ~ = - D ~ 2  &~ 

c ~2 w (42) 
M6 = - D16 8X2 

where, Di~ is the flexural stiffness matrix compo-  

nents of  the laminates, zv is the first mode shape. 

Accordingly,  the curvature components  can be 

rewritten as 

3fl  = - -  (1~11/JI1-(~.~2 - -  " 1 2 / J 1 2 ~ "  - -  " 1 6 / 2 1 6  G~fl( 2 

(43) 

.1 r~ 3 ~ W _  D 32w " ~ 32w 
x2= .12u .  3x 2 &2 12~x2 - .26~,16 Ox 2 

(44) 

c ~2w �9 ~ o 3~lt' ,4 r~ o ~21t' 
x6 - d,6D. c0:c2 - (126D12 8 ~ . 2  C t66 / J16  ~ 

(45) 

Under  flexural loading, ply stresses are not l inear 

in a symmetric balanced laminates, but ply strains 

are linear. During free vibrat ion of  a laminated 

composi te  specimen, the specimen can be subject- 

ed to various flexural moments due to different 

ply stresses. Thus, we take into considerat ion only 

the principal curvature component ,  x~ corre- 

sponding  to its fundamental  bending mode shape. 

Then,  the strains in the k th layer are expressed by 
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. 692 W 
e~=:Z~7 = z(d11Du+d12Dve+d1~D16).-~-~- 

(46) 

where, z is the distance of the k th layer from the 

midplane. 

The stress-strain constitutive equations in the k th 

layer are 

.l r x ~214d 
~1 h : - Q u z (  duDll  + dt2D~2+ 61161d16) a.v2 (47) 

. (~'2 Hd 
62 k=: -- OlzZ(dl~Du + cLzDt.e+ du~l)t6)8.xz (48) 

, G ~2 lU 
(76 ~' : - -  O l 6 e ( d u D H  + d~zD~2+ d161316) 3 .v2  ( 4 9 )  

in which @a is the stiffness matrix components of 
k th lamina. 

From coordinate transformation relations for 

the stress, the stresses of a symmetric balanced 

laminated composites in the fiber coordinate sys- 

tem can be expressed as 

�9 0 ~2 ,3{1 7 
0"2" ( Y J ~ Z 2 Q l l - - / ~ 2 Q I 2 )  [ Z(dllDn + dt2Dve) ax 2 

(50) 
. C ~2 Z4) 7 

0"y = (:r/2Ou + V/2 Q,2) [ - -  2. ( dnOll  + d12D,2) -~.T J 

(51) 

0-~ -  ( -  m n Q .  + mnO12) E - z ( d . D .  + d~2Dl~) 

a~ z~' q (52) dx 2 J 

where, m=cos0k, n = s i n & .  

The: strains of the k th layer in the fiber coordi- 

nate are transformed in a sirnilar approach as 

follows : 

d2w (53) ex= m Z z ( d u D ,  + dveDi2) 8x 2 

r  , 2  12/ axe (54) 

3Zw (55) r 2rn~/lz(dllDu + d12Dx2) c~x 2 

When considering an element of the k th layer of 

unit width at distance z from the midplane, the 

total stored energy in the x direction, W~, can be 

evaluated by taking the volume integration of 

strain energy density. The dissipated energy in 

this layer can be expressed by 

/1Vl/x= 2 rcq~14% (56) 

The energy dissipation, in more detail, is 

f l~o hs'2 d W.~ = 2 er VL a~exdzdx 

( d ~ l D .  + d~2Dr,) "~ ( rn "~ 011 + ~'~ O~'~) z 2 d z  

f lazz~ fie w , 
-~y,2 ax ( 57 ) 

Similarly, z/Wy and dWxy can be evaluated as 

follows : 

d W , , = 2 z c ~ f ~ " ~ n ~ ( d . D 1 .  + dtzD12) 2 

2 ,, ' 3 2 w  ~x  2 a x  (58) (ll2Qu + ,.z (v)le) z-d~ f o~x2 '~2l~' " 

fo h.,2 2 " dWxy  22rrBr m n  ( d u D u  + dlzD12)- 

2 f l oq2z# o~2w 
( FE/t'~O11 + mnOle) z de,, ,  ~.~ 3xz dx 

(59) 

For the beam, the overall damping qo,, is then 
expressed by dividing the total dissipated energy 
by the total stored energy as follows : 

~ d W  _ z~L I4~ + 71r144.,+ ~LrWxy 
Z?o~-- 27r~ W ff~-+ Wy+ Wxu 

(58) 

3. Results and Discussion 

The effective laminate damping loss factors 

determined by Adams and Ni's theory, the 

modified classical laminate theory and proposed 

energy theory are illustrated for the four lami- 

nates I~ Ols, I0/_+_01s, [0 /0 Is  and [0/_+0/901 

s in Figs. (2--5).  In the case of I_+_01s graphite/ 

epoxy laminate, predicted damping obtained from 

theoretical models indicate a similar trend (Fig. 

2). Predicted damping for the other (i. e., [0/ 

• 0Is, !0 /0]s  and [0/_+ 0/901s) graphite/epoxy 

laminates indicate some divergence. For example, 

In the Adams and Ni's theory, predictions for the 

I 0 / + 0 1 s ,  [0/01s and I 0 / •  laminate, 
shown in Figs. (3--5),  exhibit a similar trend to 

those of" the off-axis composites. The damping 

increases to a maximum value in the range of 15 ~ 

to 30 ~ and decreases slightly as the angle 

approaches 90 ~ . On the other hand, in the 

modified classical laminate theory and the 

proposed theory, the maximum value of damping 
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Fig. 2 Comparison of damping loss factors for the- 
ories in the [6'/-0] s carbon/epoxy laminates 
as a function of fiber orientation. 

Fig. 4 Comparison of damping loss factors for the- 
ories in the [0 /0 /  0Is carbon/epoxy lami- 
nates as a function of fiber orientation. 

Fig. 3 Comparison of damping loss factors for the- 
ories in the [0/0Is carbon/epoxy laminates 
as a function of fiber orientation. 

occurs in the range of 30 ~ to 60 ~ . These discrep- 

ancies may occur owing to their different assump- 

tions and the absence of an accurate expression of 

the basic Poisson's damping in the modified 

classical laminate theory. Increasing the percent- 

age of 0 ~ plies in the laminates reduces damping. 

This observation is consistent even if the vis- 

coelastic response of the matrix is the major 

damping mechanism. The numerical results dem- 

onstrate that damping is significantly influenced 

by stacking sequence in composites. It is also 

observed that the fiber orientation with the high- 

Fig. 5 Comparison of damping loss factors for the- 
ories in the [0/6'/ 0/90Is carbon/epoxy 
laminates as a function of fiber orientation. 

est loss factor must be located near the surface of 

the laminate to produce the highest loss factor in 

laminated composites. 

4. C o n c l u s i o n s  

Three damping prediction models have been 

compared for symmetric balanced laminated com- 

posite beams. The comparisons show that the 

results of the three models are in reasonable 

agreement. Also, each theory is valid only for the 

fundamental flexural mode shape. Damping is 
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highly sensitive to fiber orientation and stacking 

sequence in each model. The principal curvature 

approacll in strain energy with a tinear ply strain 

condition can provide more accurale solutions 

than the principal moment approach with ply 

stress condition in damping prediction of symmet- 

ric balanced laminated composites owing to the 

discontinuous ply stress distribution between 

laminae. Development of a closed ibrm solution 

of the basic shear damping and Poisson's damp- 

ing will laelp to make more accurate prediction of 

damping and to reduce discrepancies among the 

models. 
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