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Comparison of Prediction Methods for Damping of
a Symmetric Balanced Laminated Composite Beam
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To determine the effective damping of a symmetric, balanced laminated composite, three
different analytical models were compared. In the first model, Adams and Ni’s theory was used.

In the second model, modified classical lamination theory based upon the elastic-viscoelastic

correspondence principle was used. In the third model, an energy approach was developed to

investigate the damping of laminated composite beams. Four typical laminated composites with
[£9])s. [0/£0]s. [0/8]s and [0/+ 0/90]s stacking sequences were employed for this study.

Key Words :

Vibration, Damping, Loss Factor, Laminated Composites, Classical Lamination

Theory, Energy Approach, Force Balance Approach, Elastic-Viscoelastic Corre-

spondence Principle

1. Introduction

Composites have been used to manufacture
enclosures, airframe structures, sports goods, heli-
copter blades, spacecraft and ground vehicles.
Composites have more attractive properties such
as light weight, superior strength and stiffness.
than the conventional materials. The structural
elements usually are subject to undesirable vibra-
tions. In order to use composites as dynamic
members, their
properties must be understood (Adams,
Hashin.
important factors in the design of composite

vibration damping
1987 ;
1970). These damping properties are

structural

dynamic structures. Therefore, it is necessary to
compare prediction methods and determine the
most efficient method for predicting the damping
of composites.

Adams and Ni (1984) developed a model to
provide designers with a useful and accurate
prediction method for damping of composites.
Their model predicted damping in laminated
composites related to 3 sources of energy dissipa-
tion with respect to the in-plane stresses gy, o
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ando,, in the fibre coordinate system. Sun and
(1987)
prediction method which use the classical lamina-

coworkers proposed another damping
tion theory and elastic-viscoelastic correspon-
dence principles. We have further developed and
modified these theories.

The objective in this paper is to develop a new
mathematical model to predict the damping val-
ues of symmetric balanced laminated composites.
Material damping usually occurs as the result of
the flexural vibration. Thus, we accounted for all
possible flexural moments on the laminated com-
posite beam during free vibration. In the
proposed damping prediction model, all feasible
moments in the constitutive equations of the plate
theory of laminated composites are taken into
account by considering only the principal curva-
ture (x,) corresponding to mode | shape(i. e. first
flexural mode). The damping of a symmetric
balanced laminated composite predicted in this
paper is based on the modified classical laminated
theory with a complex modulus and the proposed
new model. It is compared with that of Adams
and Ni’s model.

2. Analysis

In this study, three analytical approaches were
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Table 1 Basic material properties of AS4/3501-6

composites used in this study.

E, E; . Gir /s n hr oLt
@GPy | iGPay | 7 [(GP2) [(x1079 | (x10°% | (x107%) [{x10%)
125 | 926 | 03 | 59 18405 85801 | 9477 | 9.204

L 4

x : fiber direction

y :normal to the fiber direction
z:normal to x-y plane

1,2 : loading direction

Fig. 1 Fiber and loading coordinate systems used in

the analytical models.

employed. The first model devoloped by Adams
and Ni is the energy approach. The damping loss
factor, », is defined as ;

4w

=3
where AW is the energy dissipated during a stress
cycle and W is the maximum strain energy. The
second model which was modified is to use the
force balance approach. In this approach, we
obtain the [A], [B] and [D] stiffness matrix in
laminated composites by utilizing classical
lamination theory. The damping of laminated
composites is defined as the ratio of each compo-
nent of [A], [B] and [D] loss moduli to their
storage ones. The final model is a new energy
approach. Three analytical formulation is perfor-
med on the coordinate system as shown in Fig. I.
The basic material data used for three models are

shown in Table 1 as well.

2.1 Madification of basic damping loss fac-
tors

In order to calculate the dissipated energy in

composites, it is essential to accurately evaluate

the basic damping loss factors. In general, it is

known that an increase in the amount of damage

in the material, the stress amplitude of the test, or
the test frequency tends to enhance the damping
loss factor.

The theoretical models that are currently avail-
able to predict the damping loss factor for com-
posites are inadequate for design purposes. A
theoretical model (Hashin, 1970) assumes that
adhesives are flexible and the bonding between
the fiber and the resin is perfect. However, practi-
cally, it is very difficult to fabricate specimens to
exactly suit the model. Also. damping can be
caused by interface mechanisms such as shearing
motion between the fiber and the matrix. More-
over, as the structural dimensions increase, the
number of defects in the material increases as
well. between theoretical
predictions and practical results are unavoidable.

Thus, discrepancies

In order to make up for this problem, it is
proposed that the formula of the basic damping
loss factors in laminated composites must include
a curve fitting parameter on the nondimensional
stiffness terms, based on Hashin’s theory (1970)
and rule of mixtures.

From an elastic-viscoelastic correspondence
principle. Hashin (1970) derived expressions for
the basic damping loss factor of a laminated
composite. For axial loading, the basic damping
property (z.) is represented by

7y (1

n="Nn (1— Vr)

where, 7 is the axial damping loss factor in
composites, 7, is the damping loss factor of
matrix, V; is the fiber volume fraction in compos-
ites, E,, ts the Young’s modulus of matrix, E_ is
the axial Young's modulus of composites.
However, these theoretical values do not agree
with experimental values. Despite considerable
effort to eliminate extraneous losses, it was found
(Adams, 1987) that this expression considerably
underestimates the experimental value of 7. Sev-
eral factors were thought (Adams, 1987) to con-
tribute to the discrepancy : fiber diameter, fiber
misalignment, imperfections in the material
(cracks and debonds) and the interfacial shear
effect. Thus, a curve fitting parameter (g) is
herein introduced in the relationship between the
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axial damping loss factor (7,) and the stiffness

term (ZZ;L; ) :
Nm Vm
= R (2)
" Um+ Vf 7%7:*)
where,

n;,l:the damping loss factor of the matrix, 7 =
the axial damping loss factor of a unidirectional
composites, V =the matrix volume fraction, V,=
the fiber volume fraction, E,,=the matrix Young’
s modulus, E =the axial Young’s modulus of
composites, and g=the curve fitting parameter
for axial loading.

Similarly, for longitudinal shear loading, it is
proposed that the theoretical equation be
modified by introducing the parameter (5),
which is fitted to average experimental results by

trial and error :

— ) (GENEP 4 VG- gy
Nir= [G(Hﬂ)(] + V) +1- V,] [(;(1»6)(1 V) I+ I’/fj|

where, G=G,/G,, G,=the longitudinal shear
modulus of the fiber, Gm=the shear modulus of

the matrix, and g=the curve fitting parameter for
longitudinal shear loading.

For the transverse damping loss factor (zg),
the rule of mixtures and the elastic-viscoelastic
correspondence principle give us the following
equation :

T Vi

n 4
Vot V(L @

Nr="0m—
Em)

This equation may be modified by introducing
parameter () as follows :

o Vi
= 70m— Vi Vm(%); (5)
o
where, 7. =the transverse damping loss factor of a
unidirectional composites, E;,=the transverse
Young’s modulus of the fiber, and {=the curve
fitting parameter for transverse loading.

For the Poisson’s damping loss factor (7,.r),
the rule of mixtures and the elastic-viscoelastic
correspondence principle give us the following
equation :

Norr = Doty Ve + DomUrrm Vi (6)
VfZ)LTf + Vavrrm
where, 7, r=the Poisson’s damping loss factor,
pori=the Poisson’s damping loss factor of the
fiber, 2 r;=the Poisson’s ratio of the fiber, 3,,=
the Poisson’s damping loss factor of the matrix.
Hence, the accuracy of the predicted damping
loss factor in any laminated composite depends
on the choice of the basic damping experimental
data (i. e. 7., pr. 71 and g, of 0° unidirectional
specimen) . Technically, it is difficult to accurately
locate the resonance frequency and the half
-power points due to the limited frequency resolu-
tion of the analyzing instrument. Therefore. the
basic damping loss factors can only be estimated
statistically by trial and error. In addition, a
rigorous and standardized experimental method
must be developed to obtain consistent damping
results in all materials.

2.2 Adams and Ni’s approach

In this theoretical analysis(Ni and Adams,
1984), only the principal flexrual moment(M,) is
considered on the specimen. By employing plate
theory for laminated composites, the strains in the
k'™ Jayer are determined. The constitutive equa-
tion associated with stresses and strains in the k™
layer gives us in-plane stresses in the loading
coordinate system. For the beam specimen analy-
sis, gu* and gg® are not considered since g* is
much larger than they. Also, g,* is neglected since
& 18 much smaller than g* and g From
Adams and Ni's (1984), the strain energy dissipa-
tion, 4W, which is subjected to bending in the
symmetric laminated beam is divided into three
parts related to in-plane stresses, g, e, and gy,
in the fiber coordinate system :

The strain energy dissipation about g, is written
as

{ hi2
AWy= / 2 f TNLOxExdZdX
0 0

{ hi2
=277, A‘ '/0‘ OxExdzdx (8)

) 2
AWx= [7{37; ’/0- WA (Qud’+ Quds+ Quediy)
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{
(mPdss -+ mndb) z2a’z_£ Midx
where,
[ is the length of beam, % is the thickness of
beam,
Nm Vm

o :m is the axial damping loss

factor of 0° unidirectional composites,

7m i$ the matrix resin damping loss factor,

M, 1s the principal bending moment in the
cantilever beam,

a 1s the curve fitting parameter,

I* is the normalized moment of inertia,

d} is the normalized flexural compliance com-
ponent.

Similarly, AW, and 4W,, can be evaluated as

follows :
hi2 .
AW:'Z}T?ZTI nz(Qudﬁ + Q12d1’5+ Qledfg)
0
{
(2d— mnd?) dz A Mede  (9)
hi2
AWo=2TBE (" e (Quati + Quuds

+ dex*é) (2mnd1’? - (m2~ 7’12) df.é)
2dz [ ‘Midy (10)

The bending strain energy of the beam is

Wb:/(;zMuadx_d“fMldx (Il)

The total damping loss factor (#,) in laminated
composites is then expressed as :

_ AW AW AWst AW ()

Pou =" W,

where,

¢ov="2m70 is the specific damping capacity in
laminated composites, 7, Is the overall damping
loss factor in laminated composites.

2.3 Modified classical lamination approach

In order to obtain the complex modulus, we
relied on the elastic-viscoelastic correspondence
principle. The complex equation includes two
real constants for storage and loss moduli. The
material damping for a symmetric balanced
laminated composite is obtained as the ratio of

the loss modulus to the storage modulus. Using
the elastic-viscoelastic correspondence principle
(Sun et. al., 1987), we describe the basic engineer-

ing constants in a complex form as follows :

El=E (I+in) (13)
ci=FEr(1+ipr) (14)
Glr=Gor (M Hiner) (15)
vir=ver (1t inorr) (16)
where,
Nm Vm

Tt v
i Vy
Vf+ Vm( _sz)g

(L= V)[((,+l) EALVAG -
Ter= [G(lm(] FV) 1=V HG(HIJ)I
_ Doty Vet BomUiin Vi
I/fZ/LTf+ Vavrrm
in which, V=1~
tion, @, & and g is the curve fitting parameters for

N=m—

1)@-]
Vi +14+ 1]

Dot =

V., is the fiber volume frac-

data reduction,

G=4-

The relations between Q;; and the basic engineer-
ing constants are described as:

E;
o= 17
ULTET
X 18
x> I —vir (——*) (18)
B

- ) 19
W= o L (19)
st: Gir (20)

Substituting Egs. (7), (10) into Egs. (11), (14),
we obtained the foliowing relations :

Qb= Qiex T 1Q%x (20
Qo= Qi+ 1Q5% (22)
Q= Quw+ Q% (23)
Q&=Grr=Grr (1 4-dp1r) (24)

To calculate [A], [B] and [D], we transformed
I'Q] with reference to the fiber orientation of each
layer. The transformed @ and Q7 (i, j=1, 2, 6),

which are related to Qij (i, j=x. y, s), are de-
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scribed as

ZX: QxxCOS4 4+ nysm4 642 (Qxy +2 st)

sin®fcos*P (25)
Qo= QuxSIN* G+ Q1,c08* 0+ 2( Qry +2 Qss)

sin®gcos*g (26)
@: (Qxx+ Quy—4Qss) SIN*HcO8* § + Quy

(sin*@ +cos*g) 27N
@: (Qxxt Qu—20x—2Qss) sin*fcos*§

+ Qs (sin* g +cos*§) (28)
Q16= (Qrx— Qv —2Qs5) SINGcO* 0+ (Quy

— Qw—2Qss)sin*gcos g (29)
Q= (Qrx— Qv —2Qs5) sIN*Pcos § + (Qy

— Quw—2Qss)sinfcos® (30

The expression of A;;, B;; and Dj; from the classi-
cal lamination theory and the ¢lastic-viscoelastic
correspondence principle are given by

[ A— JE—
A=Ay HiAG= 2 (Q5+iQ5) "

(ha—hw-)) (€2))
Bi=Bi+iBi= 5 2 (@ +iQ) ™
(Bs— hy) (32)
Dy=Diy+ iD= 5 (@ +i QD™
(hk— k) (33)
where, i=/—1.
We converted these modulus constants

obtained from a symmetric balanced laminated

composite into the corresponding complex
modulus constants using elastic-viscoelastic cor-
respondence principle. We then evaluated the
damping of a

material symmetric balanced

laminated composite as follows :

Ans, (stretching) ;1‘44 (34)
b ccoupiine) — B

s (coupling) = B (3)
5 o DE

7. {bending) = Vs (36)

where, 1, j=1, 2, 6.

Consequently, the effective laminate engineer-
ing constants E,, E,, ., and Gy, can be expressed
as functions of the stretching stiffness constants, A,
and the laminate thickness. We evaluated the
storage stiffness constants A; and the correspond-
ing dissipated constants, each separately, from the

relationships between the effective engineering
constants and [A] stiffness constants. We then
obtained the material damping for the symmetric
balanced laminated composites in terms of the
measurable engineering properties for compari-
son with predictions.

2.4 Proposed energy approach

From the plate theory of symmetric balanced
laminated composites we can express the curva-
ture components as follows :

x=dnuM,+ dioM:~+ dieMs (37
x27=dioMi+ doa Mo+ dze M (38)
x6= s M+ dos Mo+ des Ms (39)

where, ¢; is the flexural compliance matrix com-
ponents of the laminates.

And the relations of moment deflection in the
laminated beam are given by

2

M1: *Dnaa;g (40)
2 Y

Mz: _DIZ% (41)
2 )

Mes: ‘1)16% (42)

where, [);; is the flexural stiffness matrix compo-
nents of the laminates, g s the first mode shape.

Accordingly, the curvature components can be
rewritten as

2 200 2.,
X=— anu’%xiz* a’lngz%%'~ d;lee%—;ﬁ
(43)
“w " w 20
Ho= — dIZDII%;%* dzlez%— dosDis %;g
(44)
2, 2 -
Xe— — d]esDn%_ dzeDlz’%ng* dsele‘%’%
(45)

Under flexural loading, ply stresses are not linear
in a symmetric balanced laminates, but ply strains
are linear. During free vibration of a laminated
composite specimen, the specimen can be subject-
ed to various flexural moments due to different
ply stresses. Thus, we take into consideration only
the principal curvature component, x, corre-
sponding to its fundamental bending mode shape.
Then, the strains in the k' layer are expressed by
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61 2k = —z(duDu+ dieDio+ disDis) aa lg

(46)

where, z ts the distance of the k'" layer from the
midplane.
The stress-strain constitutive equations in the k'

layer are
T Fw
of = — Qnz{duD\+ di2Diz+ dieDie) i’ (47)
f=s ‘QIZZ dllDll+(lllez+dlthb) a ZU (48)

Géef- - leZ(dan + dhoDin+ dlﬁDlﬁ) a (49)

in which @, is the stiffness matrix components of
k' lamina.

From coordinate transformation relations for
the stress, the stresses of a symmetric balanced
laminated composites in the fiber coordinate sys-
tem can be expressed as

0x= (m* Qi+ 1" Q) [ — z(diDu+ di2Dra) ?9 MZY ]

(50)
6= OEQu+ mQu) [~ 2(dnDu+ duDio) 4]
(51)
Oxy=(— mn@Q +mn@) | —z(duDn+ diDr)
Fw (52)

ox*

where, m=cos§,, n=sing,.
The strains of the k'* layer in the fiber coordi-
nate are transformed in a similar approach as

follows :
Ex=—m Z(duDJH”duDu) 5 w (53)
Ey=—"nN Z(dllDll+d12Dlz) s Zl' (54)

—Zmnz(d11D11+d12D12) a M’ (55)

When considering an element of the k'" layer of
unit width at distance z from the midplane, the
total stored energy in the x direction, W,, can be
evaluated by taking the volume integration of
strain energy density. The dissipated energy in
this layer can be expressed by

AWe=27n. Wx (56)

The energy dissipation, in more detail, is

13 hi2
Wrzzzﬂ'v/o‘ / ”LUXEdedx
o
hi2

14 hil
=277 /(; / OxExdzdx =27y, A m’
(7]

(d11[)11 + chiaDi2) Z(WIZQU + HZle) 2dz
2, 2,0

Similarly, AW, and 4W,, can be evaluated as
follows :

hi2
Am,ZZHUTj; n (duDn+di2Di2)?

P Fw
b ox® ox?

Ri2 )
ZIny:?Jmle —2mn(dnDu+ deDrs)®

(P Qu -+ m* Q) Zdz

(58)

(—mnQu+mnQr) 2 dz/ 7 ow _@ﬂid
(59)

For the beam, the overall damping 7, is then
expressed by dividing the total dissipated energy
by the total stored energy as follows :

AW
T2SW

ULW +77T1/I/J+77L7ny
Wit Wyt W

(58)

3. Results and Discussion

The effective laminate damping loss factors
Adams and Nis theory, the
modified classical laminate theory and proposed
energy theory are illustrated for the four lami-
nates [ = 4]s, [0/£@]s. [0/0]s and [0/ + 9/90]
s in Figs. (2~5). In the case of [ = 4]s graphite/
epoxy laminate, predicted damping obtained from
theoretical models indicate a similar trend (Fig.
2). Predicted damping for the other (i. e, [0/
+@ls, [0/¢]s and [0/ + §/90]s) graphite/epoxy
laminates indicate some divergence. For example,
In the Adams and Ni’s theory, predictions for the
[0/x8]s, [0/8]s and [0/40/90]s laminate,
shown in Figs. (3~35), exhibit a similar trend to

determined by

those of the off-axis composites. The damping
increases to a maximum value in the range of 15°
to 30° and decreases slightly as the angle
approaches 90°. On the other hand, in the
theory and the

modified classical laminate

proposed theory, the maximum value of damping
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Fig. 2 Comparison of damping loss factors for the-
ories in the [ §/-@]s carbon/epoxy laminates
as a function of fiber orientation.
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Fig. 3 Comparison of damping loss factors for the-
ories in the [0/#]s carbon/epoxy laminates
as a function of fiber orientation.

occurs in the range of 30° to 60°. These discrep-
ancies may occur owing to their different assump-
tions and the absence of an accurate expression of
the basic Poisson’s damping in the modified
classical laminate theory. Increasing the percent-
age of 0° plies in the laminates reduces damping.
This observation is consistent even if the vis-
coelastic response of the matrix is the major
damping mechanism. The numerical results dem-
onstrate that damping is significantly influenced
by stacking sequence in composites. It is also
observed that the fiber orientation with the high-

S5e-3

4e-3 -@- Adams & Ni's theory
~# Present theary

4e-3 A~ MCLT

de-3

de-3 A s

Effective Loss Factor

Oe+Q T T T T T

0 15 30 45 60 75 20

Fiber Orientation

Fig. 4 Comparison of damping loss factors for the-
ories in the [0/4/-@]s carbon/epoxy lami-
nates as a function of fiber orientation.
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-8 - Prensent theary

de-3

4e-3

Effective Loss Factor

Oe+0 T T T T

o 15 30 45 &0 75 90
Fiber Orientation

Fig. 5 Comparison of damping loss factors for the-
ories in the [0/4/-8/90]s carbon/epoxy
laminates as a function of fiber orientation.

est loss factor must be located near the surface of
the laminate to produce the highest loss factor in
laminated composites.

4. Conclusions

Three damping prediction models have been
compared for symmetric balanced laminated com-
posite beams. The comparisons show that the
results of the three models are in reasonable
agreement. Also, each theory is valid only for the
fundamental flexural mode shape. Damping is
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highly sensitive to fiber orientation and stacking
sequence in each model. The principal curvature
approach in strain energy with a linear ply strain
condition can provide more accurale solutions
than the principal moment approach with ply
stress condition in damping prediction of symmet-
ric balanced laminated composites owing to the
discontinuous ply stress distribution between
laminae. Development of a closed form solution
of the basic shear damping and Poisson’s damp-
ing will help to make more accurate prediction of
damping and to reduce discrepancies among the
models.
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